top of page

The Shape of Thought

A few weeks ago while I was thinking outside of whatever box sits around my mind, I thought "I will make a prediction: neurotopology is toroidal". I didn't know exactly what I meant by that. But then, I have made other predictions about neurology that have been shown to be correct. The means by which the insular cortex is different in bipolar people, for example.


I had thought "when neuroscience catches up, we will see if this is true". But it's already there, and it is true.



This individual, Artem Kirsanov, has some interesting videos on the mathematics of neuroscience.


So what do I mean by "neurotopology is toroidal"? There are a few things.


1) From the point of view of a bicameral mind, I constantly visualize neurology as a cylindrical space. Two cylindrical spaces actually, a low, broad one of the left (spatial) side, and a high, narrow one on the right (temporal side).

2) When you watch the video, you can see how intuitive this notion is. All of our lives are defined by loops. Going to work and coming home. Going to buy groceries and coming home. Going on a trip and coming home.

3) There is a book by Stephen Jay Gould called Time's Cycle, Time's Arrow, which talks about the way by which we perceive the shape of time. I have never read the book, but for me, essentially there are to competing notions of a temporal view of existence, either we are trying to reach a point of equilibrium by balancing the energy we take from the world with what it can reproduce (time's cycle), or we are aiming for a point in the future when all will be well (time's arrow). In the latter case, it is usually mixed in with monotheism to say that this point in the future is after one dies.


There is an interesting question that immediately arises. Have our brains evolved in a way to trick ourselves into moving along these axes in tandem so that we can move forward as a species? The science of neuroplasticity would say that this is indeed true. I have a philosophical means to explain this. I call it "Kierkegaard's Ladder", and I intend to talk a bit about it in Chapter 2 of Icarus.



So then what are our enslaved brains trying to accomplish?


I have an idea about this.



Why is a sphere different than a torus?


Why is the Poincaré conjecture so difficult for 3-manifolds?


What's the number between 3 and 5? Euphoric seizures are pretty weird. But that's a question for another day.



Should we be looking at homeomorphisms between mind and reality?


Metaphysical schizophrenia + toroidal vertigo = will + testament ;)


Probably not... slavery is a far better reality anyway, right?



Kierkegaard asks "who is St Peter and who is St Paul?"


Don't worry, no euphorias this time. Just good old-fashioned modular neuromathematical connectivity. I've learned my lesson. Promise. And if I haven't"what is there to do but pursue this?" (p. 183).




Comments


bottom of page